Title | Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. |
Year of Publication | 1993 |
Authors | M.R. Koller; S.G. Emerson; B.Ø. Palsson |
Journal | PLoS Comput Biol |
Abstract | There is a growing consensus that clinical practice in the areas of bone marrow (BM) transplantation and gene therapy will rely on the ex vivo expansion of hematopoietic cells. We report here on the development of continuously perfused culture systems (bioreactor systems) that expand human stem and progenitor cells from BM mononuclear cell (MNC) populations obtained without cell enrichment. In three separate experiments, 10 bioreactors were each inoculated with 3 x 10(7) BM MNC from patients undergoing marrow harvest for autologous transplantation. At various times thereafter (between days 6 and 16), duplicate bioreactors were harvested and cells were analyzed. The bioreactors contained three cell populations that were analyzed separately: nonadherent cells; cells that were loosely adherent to the endogenously formed stromal layer; and an adherent cell layer that required trypsinization for removal. Total cell numbers increased continuously to give an overall 10-fold (range, 8- to 11-fold) expansion by day 14. The adherent stromal layer significantly expanded to more than 2 x 10(7) cells, but remained less than 6% of the total cell population. Colony-forming unit-granulocyte-macrophage (CFU-GM) numbers expanded 21-fold (range, 12- to 34-fold) by day 14 and, because this expansion was greater than that for total cells, CFU-GM were enriched by as much as fourfold by day 14. Burst-forming unit-erythroid (BFU-E) numbers peaked earlier than did CFU-GM numbers, with a 12-fold (range, 6- to 18-fold) expansion obtained on day 8. In contrast to CFU-GM, which were predominantly nonadherent, BFU-E were more evenly distributed between the three cell populations. Stem cell activity was measured by the long-term culture-initiating cell (LTC-IC) limiting dilution assay. The number of LTC-IC per reactor consistently increased with time in all cultures, resulting in a 7.5-fold (range, 3.4- to 9.8-fold) expansion. In summary, more than 3 billion cells, containing 12 million CFU-GM, were reproducibly generated from the equivalent of a 10 to 15 ml BM aspirate. These data indicate that small numbers of BM MNC can be readily expanded ex vivo in continuous perfusion cultures, and that such ex vivo expansion may have direct applications in clinical and experimental BM transplantation. |
URL | PubMed |