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Stoichiometrically based flux balance models provide a 
method to quantify the metabolic pathway fluxes within 
a living cell. Predictions of flux balance models are ex- 
pected to have applications in pathway engineering as 
well as in bioprocess design and control. These models 
utilize optimality principles applied to metabolic pathway 
stoichiometry along with the metabolic requirements for 
growth to determine the flux distribution in a metabolic 
network. A flux balance model has been developed for 
Escherichia cob W3110 using five experimentally deter- 
mined strain-specific parameters. In this report, we de- 
termine the sensitivity of the predictions of the flux bal- 
ance model to these five strain-specific parameters. 
Model predictions are shown to be sensitive to the two 
parameters describing metabolic capacity, while they are 
relatively insensitive to the three parameters that de- 
scribe the metabolic requirements for growth. Thus, 
when stoichiometrically based models are formulated 
for additional strains one needs to measure the meta- 
bolic capacity (maximum rates of nutrient and oxygen 
utilization) accurately. Determination of metabolic capac- 
ity from batch experiments is relatively easy to perform. 
On the other hand, the harder to determine maintenance 
parameters need not be as  accurately determined. 0 
1995 John Wiley & Sons, Inc. 
Key words: E. coli- linear optimization metabolic fluxes 
stoichiometry sensitivity analysis 

INTRODUCTION 

Quantitative descriptions of metabolic fluxes inside living 
cells have long been sought to understand metabolic phys- 
iology as well as to engineer metabolic flux distributions. 
Many attempts to systematically model metabolic dynamics 
have been carried out and several reviews are available on 
this topic. 5,6, 12,14 Much effort has also been devoted toward 
the development of a theoretical framework for the analysis 
of metabolic regulation, mostly through the use of logarith- 
mic sensitivity  coefficient^^'^"^ and overviews are avail- 

However, these developments have been limited 
by the lack of kinetic and regulatory information on the 
function of all enzymes in a particular cell. 

Recently, a new approach for describing metabolic fluxes 
has been formulated that relies on the stoichiometry of met- 
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abolic This approach requires easily 
obtainable metabolic pathway stoichiometry along with the 
metabolic requirements for growth without requiring en- 
zyme kinetic information. Flux balance models have been 
found to provide valuable information about metabolic 
pathway utilization. A flux balance model has been formu- 
lated for the industrially and scientifically important bacte- 
rium Escherichia coli that includes both the catabolic2”22 as 
well as the biosynthetic network of reactions.” The flux 
balance model has been used to successfully explain meta- 
bolic physiology under different environmental condi- 
tions .20 Predictions of the flux balance model are expected 
to be useful for bioprocess design and control in indus- 

The flux balance model has been specified for a wild-type 
E .  coli W3 110 strain using five experimentally determined 
strain-specific  parameter^.^^ The model has been shown to 
provide accurate predictions for growth, and uptake and 
secretion of metabolites under several environmental con- 
ditions. 24 These predictions naturally lead to questions 
about their sensitivity to model parameters and the robust- 
ness of flux balance models. In this report we have exam- 
ined the parametric sensitivity of the flux balance model to 
the five experimentally determined strain-specific parame- 
ters. Model predictions, using different parameter values, 
are used to simulate aerobic chemostat, batch, and fed- 
batch experimental data. These predictions are compared 
with experimental data reproduced from other sources. 24 

try. 19,23 

MATERIALS AND METHODS 

Culture 
An E .  coli K-12 strain W3110 (ATCC # 27325) was used 
for all the experimental results reproduced from else- 
where.24 The strain has been described as a nearly wild-type 
strain and is able to grow on glucose mineral medium. The 
defined glucose limited culture conditions are described 
elsewhere.24 

Flux Balance Model 
A metabolic steady state is assumed, in which metabolic 
fluxes leading to the formation and degradation of a metab- 
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olite must balance, leading to the flux balance equa- 
tion4,16.21. 

S * V  = b (1) 

where S is a matrix comprising the stoichiometry of the 
catabolic reactions, v is a vector of metabolic fluxes, and b 
is a vector containing the net metabolite uptake by the cell. 
Eq. (1) is typically underdetermined, because the number of 
fluxes (or metabolic pathways) normally exceeds the num- 
ber of metabolites. Thus, a plurality of solutions exists and 
a particular solution may be found using linear optimization 
by stating an objective and seeking its maximal value within 
the stoichiometrically defined domain. In other words, 
specifying an objective, such as to optimize the growth rate, 
would determine the best metabolic pathway utilization that 
would fulfill the stated objective. 

Objective 

A maximal growth objective has been used in the present 
i.e., Eqs. (2) and (3). 

Minimize Z = -V,,, (2) 

vm 
dM - M-biomass (3) 

all M 

where dM are the requirements in millimoles per gram bio- 
mass of the M biosynthetic precursors and cofactors for 
biomass production. These metabolic requirements for 
growth are based on biomass composition. 8*22 As noted 
later we have also incorporated a scaling factor to allow for 
strain-specific variations in biomass and maintenance. Vgro 
is the growth flux (g biomass produced), which with the 
basis of 1 g DW-h reduces to the growth rate (g biomass 
produceag DW-h). Z is the objective. 

To fulfill the objective of optimizing the growth rate we 
do not constrain the model’s ability to secrete byproducts 
such as acetate, ethanol, formate, lactate, and succinate. 
Thus, the amount of byproduct secreted is determined by 
the objective of optimizing the growth rate. We then com- 
pare model predictions of growth rates and byproducts to 
experimental data. 

Predictive Algorithm 

For the prediction of the unsteady state buildup of metabolic 
byproducts or the consumption of substrates we have di- 
vided the experimental time into increments of At. For the 
first time step the initial concentration values are specified. 
Starting with the first time step the flux balance model is 
used to predict concentrations for the next step using the 
following algorithm: 

1. Substrate concentration is given by the substrate concen- 
tration predicted from the previous step plus any addi- 
tional substrate provided in a fed-batch mode. 

2 .  

3. 

4. 

supply * At 
volume s, = s,, + (mmol/L) (4) 

The substrate concentration is appropriately scaled to 
define the substrate available per unit biomass per unit 
time. 

Substrate available = - S C  (mmol/g DW-h) (5) X * At 

The flux balance model is used to evaluate the net sub- 
strate uptake (S,) (may be less than the substrate avail- 
able), the growth rate (p), and potential byproduct se- 
cretion. 
Concentrations for the next time step are calculated from 
the standard differential equations using the above- 
determined growth rate (p), and substrate uptake rate 
(SJ: 

= s,, + S U  - + X ,  [I -  el-^^'] 
P 

(7) 

In the above algorithm we denote both glucose and 
byproducts as substrates that can be used by cells. Thus, as 
a result of implementing the above algorithm we predict the 
concentration time profiles of cells, glucose, and byprod- 
ucts. 

RESULTS AND DISCUSSION 
The flux balance model formulated for glucose metabolism 
and growth of the E.  coli W3110 strain incorporates five 
experimentally determined parameters in addition to the 
metabolic network stoichiometry . The first two parameters 
relate to the enzymatic capacity of the cell to utilize the 
carbon substrate (glucose) as well as oxygen. Enzymatic 
capacity limits for the utilization of glucose as well as ox- 
ygen are incorporated into the flux balance model to define 
a finite upper limit of metabolism per unit biomass per unit 
time. 

Two parameters for maintenance and one for biomass 
scaling are incorporated into the model to account for those 
activities not included in the metabolic demands for growth. 
Maintenance is incorporated as a non-growth-associated as 
well as a growth-associated requirement of energy by the 
bacterium.” Biomass requirements for growth have been 
estimated from published composition analyses .8 To apply 
the flux balance model for our bacterial strain we have 
found it necessary to apply a biomass scaling parameter that 
scales the metabolic requirements for growth which may be 
strain and environment sensitive. 

We now consider the sensitivity of the flux balance 
model to these five parameters that were experimentally 
determined for the E. coli W3110 strain.24 Significant 
220% variations in the parameters were used to determine 
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the effect of the parameters on predictive capability of the 
flux balance model. Experimental data24 is also plotted to 
provide a reference to the sensitivity analysis. 

Enzymatic Capacity for Oxygen Utilization 
The enzymatic capacity for oxygen utilization was deter- 
mined from batch experiments with oxygen and glucose 
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strain E .  coli W3110 the value was determined to be 15 
mmol 02/g DW h.24 

Aerobic batch and fed-batch cultures were simulated us- 
ing 20% variations in the oxygen utilization capacity. Plots 
for computed cell density, glucose, and acetate concentra- 
tion varying with culture time are shown in Figure 1. The 
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Figure 1. Sensitivity of the flux balance model to the enzymatic capacity for oxygen utilization. Simulated predictions for 220% variations in oxygen 
utilization capacity are shown as continuous lines against the plotted experimental data. The left panels represent a batch experiment, while the right panels 
represent a fed-batch experiment with a glucose feed rate of 0.2 g glucose/L h. Experimental data is from ref. 24. 
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Figure 2. Sensitivity of the flux balance model to the enzymatic capacity for glucose utilization. Simulated predictions for &20% variations in glucose 
utilization capacity are shown as continuous lines against the plotted experimental data. The left panels represent a batch experiment, while the right panels 
represent a fed-batch experiment with a glucose feed rate of 0.2 g glucoselL h. Experimental data is from ref. 24. 

results show that the maximum growth rate changes signif- 
icantly with the maximum oxygen utilization capacity. The 
final biomass concentration (or net yield) was observed to 
be more sensitive to an underestimation in the oxygen uti- 
lization capacity for the fed-batch simulation. 

Glucose concentration depends on the ability of the flux 

balance model to utilize glucose which is limited by the 
glucose utilization capacity times the cell density. Thus, the 
glucose concentration profiles shown in Figure 1 directly 
reflect the differences in the cell density profile. The acetate 
accumulation in culture medium shows the greatest sensi- 
tivity to the oxygen utilization capacity. The flux balance 
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model predicts that acetate secretion occurs primarily due to 
surplus redox generation.20 Thus, the oxygen utilization 
capacity has a direct and pronounced effect on the acetate 
secretion rate. 

15 
Ei 
C 

Enzymatic Capacity for Glucose Utilization 
For aerobically growing cells, the maximum glucose utili- 
zation rate was determined from batch experiments in which 
glucose was present in excess. E .  coli W3110 was observed 
to have a maximum glucose uptake rate of 10.5 mmol glu- 
cose/g DW-h.24 

Aerobic batch and fed-batch cultures were simulated for 
20% variations in the glucose utilization capacity. Plots for 
cell density, glucose, and acetate concentration are shown 
in Figure 2 .  An increase in the glucose utilization capacity 
is directly observed as a faster glucose consumption. 
Growth rate is also accelerated with a higher glucose utili- 
zation capacity. 

As with the oxygen utilization capacity, the acetate con- 
centration profiles were found to show the greatest sensi- 
tivity to the maximum glucose utilization rate, (Fig. 2 ) .  
Because the availability of the terminal oxidant, oxygen, is 
enzymatically limited, the surplus glucose is degraded to 
acetate to produce metabolic energy. Thus, increased glu- 
cose uptake is directly evidenced by an increased acetate 
secretion. 

+ Glucose UptakeRate 
Acetate Secretion Rae 

Maintenance and Biomass Scaling 
Maintenance is generally described as those activities re- 
quired to maintain the viable state of the cell regardless of 
the growth conditions. Non-growth-associated maintenance 
can be reduced to an energy equivalent that is used for 
activities such as gradient maintenance, protein turnover, 
and so forth. 

Non-growth-associated maintenance was determined 
from a plot of the chemostat data shown in Figure 3a. Glu- 
cose uptake and acetate secretion data were acquired in a 
chemostat that was not limited for minerals. The y-intercept 
of glucose uptake extrapolated to a zero dilution or growth 
rate was used to determine the glucose substrate required for 
nongrowth-associated maintenance. The glucose require- 
ment was then converted into its energy equivalent of 7.6 
mmol ATP/g DW h as the non-growth-associated mainte- 
nance energy. 

As evidenced by the plots for 20% variations in the non- 
growth-associated maintenance (Fig. 3a), predictions of the 
flux balance model are not very sensitive to this parameter. 
We have also determined the effect of variations in non- 
growth-associated maintenance on batch and fed-batch pre- 
dictions (Fig. 4). Once again, we note that the model pre- 
dictions are not very sensitive to the non-growth-associated 
maintenance. 

Biomass scaling is a parameter used to account for any 
differences in the metabolic requirements for growth for the 
specific strain and conditions used in our experiments. 

Growth has been defined in the flux balance as a 
requirement of metabolites based on the biomass composi- 
tion for E .  coli published in the literature.* Because biomass 
composition may vary with the specific strain as well as the 
growth environment, we used a multiplicative scaling factor 
to define the metabolic requirements for the conditions in 
this study. Because the flux balance model is not very sen- 
sitive to any particular metabolite22 the biomass scaling 
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Figure 4. Sensitivity of the flux balance model to the non-growth-associated maintenance requirements. Simulated predictions for 220% variations in 
non-growth-associated maintenance are shown as continuous lines against the plotted experimental data. The left panels represent a batch experiment while 
the right panels represent a fed-batch experiment with a glucose feed rate of 0.2 g glucose/L h. Experimental data is from ref. 24. 

parameter is expected to provide an adequate representation 
of the metabolic requirements for growth. 

The biomass scaling parameter was determined from 
chemostat experiments, Figure 3b. Biomass scaling has a 
direct impact on the biomass yield because it determines the 
amount of metabolites needed to produce biomass. Thus, 
the parameter was estimated from the slope (which reflects 

the biomass yield) of the glucose uptake line in Figure 3b. 
Biomass scaling for the E .  coli W3 110 strain was estimated 
as 30% greater metabolites required for growth than the 
nominal value from the 

Sensitivity of the flux balance model predictions toward 
biomass scaling was determined for chemostat operation as 
shown in Figure 3b. Moderate to small differences are 
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Figure 5. Sensitivity of the flux balance model to the biomass scaling. Simulated predictions for ?20% variations in biomass scaling are shown as 
continuous lines against the plotted experimental data. The left panels represent a batch experiment, while the right panels represent a fed-batch experiment 
with a glucose feed rate of 0.2 g glucoselL h. Experimental data is from ref. 24. 

found in the model predictions for 20% differences in bio- 
mass scaling. Simulations for batch and fed-batch experi- 
ments were also carried out and are shown in Figure 5. 
Once again, whereas biomass scaling was found to affect 
the biomass yield, the model predictions were quite similar. 

In addition to non-growth-associated maintenance activ- 
ities there are some maintenance functions of a living cell 

that increase with the growth rate. Thus, a growth- 
associated maintenance energy term has been defined" that 
accounts for such activities. The growth-associated mainte- 
nance parameter is determined from chemostat data as 
shown in Figure 3c. The figure also shows a plot of model 
predictions for 20% variations in the parameter. Growth- 
associated maintenance was determined from the critical 
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growth rate at which acetate is secreted or the point at which 
the glucose uptake line changes slope. This critical growth 
rate is also the point at which the oxygen utilization capacity 
is reached. For the bacterial strain and conditions used here 
growth-associated maintenance was estimated at 13 mmol 
ATP/g DW h. 

From the simulations of chemostat experiments, shown 

in Figure 3c, we observed that the flux balance model was 
not sensitive to the growth-associated maintenance. Batch 
and fed-batch cultures were also simulated for +20% vari- 
ations in the growth associated maintenance and are shown 
in Figure 6. Similar to the chemostat results the flux balance 
model predictions were not found to be sensitive to the 
growth-associated maintenance parameter. 

76 BIOTECHNOLOGY AND BIOENGINEERING, VOL. 45, NO. 1, JANUARY 5, 1995 



In summary, the flux balance model was not found to be 
very sensitive to 220% variations in the maintenance and 
biomass scaling parameters. Although the determination of 
these parameters is open to some subjective interpretation, 
due to slight scatter in the chemostat data, it may be re- 
emphasized that small differences in the parameters do not 
affect the flux balance model predictions. 

Another noteworthy observation from the chemostat data 
in Figure 3 relates to the acetate secretion rate. The acetate 
secretion rate may be mathematically described as': 

where v is the byproduct formation rate in units of milli- 
moles acetate/g DW-h. It was observed that whereas the 
maintenance and biomass scaling parameters affect p.,, the 
critical growth rate at which acetate secretion occurs, the 
parameters have no effect on vi the slope of the acetate 
secretion line. The slope of the acetate secretion line de- 
pends only on the condition of optimality of growth as- 
sumed in the flux balance model. The slope can be larger or 
smaller if suboptimal acetate secretion occurs at any growth 
rate. Thus, a fit of the acetate secretion predictions to the 
chemostat data provides a test for the validity of the flux 
balance model formulated for a particular strain. 

Sensitivity to the P I 0  Ratio 

Little ambiguity remains about the stoichiometry of the met- 
abolic pathways used to formulate the flux balance model.*l 
The electron transfer system and the concomitant chemios- 
motic generation of high energy phosphate bonds is one 
area in which alternate stoichiometries have been proposed. 
For the well-studied E .  coli cell we have used the stoichi- 
ometry of P/O = 1.3 to formulate the flux balance model 
which is supported by some experimental literature; e.g., 
see refs. 11, 13, and 21. Because there exists some debate 
on this issue we have investigated the effect of a different 
P/O stoichiometric ratio on the flux balance model for E .  
coli. 

Simulations for chemostat growth were carried out using 
P/O ratios of 1.3 and 2.0. The results are shown in Figure 
7. A small difference is observed in the slope of the glucose 
uptake rate, which indicates a small increase in the yield 
due to the additional metabolic energy generated at the 
higher P/O ratio of 2. However, a more dramatic result was 
observed for acetate secretion where the critical growth rate 
for the onset of acetate secretion was significantly higher. 
Indeed, the critical growth rate is much higher than the 
maximum growth rate of the bacterium on glucose and thus, 
the flux balance model does not predict acetate secretion to 
occur for E .  coli using the P/O ratio of 2. 

The above deductions are reinforced by simulations for 
batch and fed-batch experiments shown in Figure 8 .  At the 
higher P/O ratio of 2, a higher growth rate is observed along 
with a faster rate of glucose consumption. The resulting 
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P/O = 2 1 -  % 
c) a 

0.0 0.2 0.4 0.6 0.8 1.0 
D ( l h r )  

Figure 7. Effect of the P/O ratio on the predictions of the flux balance 
model for chemostat growth. Model predictions for P/O ratios of 1.3 and 
2.0 are plotted against experimental data. Experimental data is from 
ref. 24. + represents glucose uptake rate, represents acetate secretion 
rate. 

biomass yield was slightly higher for the P/O ratio of 2. 
Acetate was again not found to be secreted at the higher P/O 
ratio. Thus, the flux balance model permits a discrimination 
between alternate P/O stoichiometries. 

It is interesting to note that, whereas the flux balance 
model was not very sensitive to the maintenance energy, it 
was very sensitive to the P/O ratio, although both quantities 
primarily affect the ATP energy pool. The situation may be 
explained by pointing out that the maintenance energy 
forms only a small fraction of the cells total energy needs, 
which is approximately 70 mmol ATP/g DW. Thus, the 
model is not very sensitive to the maintenance require- 
ments. On the other hand, most of the metabolic energy is 
produced by the overall process of aerobic respiration. 
Therefore, it may be expected that the P/O ratio would have 
a significant impact on the flux balance model. 

CONCLUSION 

In this report we have examined the sensitivity of the flux 
balance model formulated for E .  coli W3110. The model 
was found to be very sensitive to the parameters describing 
maximum enzymatic utilization capacity for oxygen and 
glucose. These parameters are readily determined for any 
strain and processing condition of interest. On the other 
hand, the model was found to be relatively insensitive to 
the parameters describing the metabolic requirements for 
growth, namely non-growth-associated maintenance, 
growth-associated maintenance, and biomass scaling. The 
stoichiometry of the respiratory chain, the P/O ratio, was 
determined to influence predictions of growth and meta- 
bolic flux distribution significantly. The experimentally de- 
termined value of 1.3 reported in literature was found to 
result in accurate predictions of experimental data. 

Given the robustness of the predictions obtained from the 
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flux balance based models, the relative ease with which the 
key strain-specific parameters are obtained, and the 
straightforwardness of the model formulation, it is likely 
that stoichiometric models will find wide use in strain and 
bioprocess development. 
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