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The measurement of  uptake and secretion rates is often not sufficient to allow the 
calculation of  all internal metabolic fluxes. Measurements of  internal fluxes are 
needed and these additional measurements are used in conjunction with mass-balance 
equations to calculate the complete metabolic flux map. A method is presented that 
identifies the fluxes that should be selected for experimental measurement, and the 
fluxes that can be computed using the mass-balance equations. The criterion for 
selecting internal metabolic fluxes for measurement is that the values of  the computed 
fluxes should have low sensitivity to experimental error in the measured fluxes. A 
condition number indicating the upper bound on this sensitivity, is calculated based 
on stoichiometry alone. The actual sensitivity is dependent on both the flux measure- 
ments and the error in flux measurements, as well as the stoichiometry. If  approxi- 
mate physiologic ranges of fluxes are known a realistic sensitivity can be computed. 
The exact sensitivity cannot be calculated since the experimental error is usually 
unknown. The most probable value of the actual sensitivity for a given selection of  
measured fluxes is estimated by selecting a large number of  representative error 
vectors and calculating the actual sensitivity for each of these. A frequency distribu- 
tion of actual sensitivities is thus obtained giving a representative range of actual 
sensitivities for a particular experimental situation. 

Introduction 

The study of steady-state fluxes within the cell's metabolic network and the changes 
in these fluxes in response to enviromental stimuli provides information about the 
regulation of  intermediary metabolism and is important for a number of  clinical and 
biotechnological applications. Metabolic networks can be divided into two general 
classifications. The first type of network has a large ratio of end products to branch 
points, so that measurements of product secretion and nutrient uptake rates coupled 
with mass balances on the intermediates allow the fluxes throughout the network to 
be estimated. Networks which include only major metabolic and product formation 
pathways are examples of this type of network. This type of network is commonly 
used when analyzing bacterial metabolism and product synthesis. 
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The second type of metabolic network has a large number of branch points and 
relatively few secreted products. The steady-state fluxes through these networks can- 
not usually be obtained solely from measurements of the fluxes of components enter- 
ing and leaving the cell. Additional measurements of fluxes within the cell must 
normally be made, typically by the use of ~4C labeling or in oivo NMR techniques. 
Networks describing mammalian cell metabolism and detailed networks of bacterial 
metabolism are examples of this type of network. 

Examples of the first type of metabolic network are found in butanediol and 
mixed-acid bacteria. The fluxes through these networks have been computed using 
measurements of the production rates of the fermentation products (Blackwood 
et al., 1956) and mass-balance equations (Papoutsakis & Meyer, 1985). The uptake 
and production rates involved with lysine fermentation of Breoibacterium have also 
been measured (Erickson et al., 1978), and the fluxes within the network calculated 
(Vailino & Stephanopoulos, 1989). The set of mass balances and data result in an 
overdetermined system of equations, in which linear regression is used to estimate 
the unknown fluxes. 

Several algorithms have been formulated for studying this type of network. The 
number of flux measurements that are needed to verify the stoichiometry of the 
biochemical network was derived (Tsai & Lee, 1988; Niranjan & San, 1989). The 
consistency of a set of flux measurements can also be checked by means of the mass- 
balance equations (Papoutsakis & Meyer, 1985). A complete procedure for analyzing 
this type of network is discussed in (Vallino & Stephanopoulos, 1989). This procedure 
provides a means for identifying errors in measurements and verifying the appropri- 
ateness of the steady-state approximation. The condition number of the system is 
used to determine whether the system is well-posed, and thus whether the fluxes 
within the network can be calculated based on measurements of uptake and produc- 
tion rates. A high condition number indicates that the network, as formulated, is ill- 
posed. The sensitivity of each calculated flux to each measurement can be estimated 
in order to identify the reactions that should be measured with the greatest accuracy. 

In order to estimate the fluxes in the second type of network, i.e. those with a large 
number of branch points, some of the reaction fluxes within the network must be 
measured. The common technique is to expose cells to nutrients labeled with 14C, 
measure the concentrations of intermediates and products with the ~4C label, and 
then calculate the steady-state fluxes using the mass-balance equations. The carbon 
fluxes in the metabolic network of the protozoa Tetrahymena have been measured 
in this manner for low glucose, high glucose, and low oxygen conditions (Stein & 
Blum, 1979, 1980, 1981). The results from this work included the quantification of 
futile cycling in the cell and the effect of glucose on the glyoxylate bypass. The fluxes 
through liver cells removed from rats on different diets have also been measured 
(Sauer et al., 1970; Stucki & Walter, 1972; Crawford & Blum, 1983; Rabkin & Blum, 
1985), as well as fluxes in cardiac tissue (Safer & Williamson, 1973). The effects of 
hormones on the fluxes in the liver were determined and the control characteristics 
of a series of fluxes were observed. 

The minimum number of fluxes that must be measured using labeling techniques 
in order to uniquely calculate all the fluxes is equal to the number of independent 
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compound balances subtracted from the number of reactions. The mass-balance 
equations are used in conjunction with the data to calculate the values of the remain- 
ing fluxes. If the number of measurements is greater than the minimum number, 
linear regression is used to determine the unknown fluxes. 

The procedures mentioned previously for analyzing metabolic networks are not 
appropriate for this second type of network, since they are based on an over- 
determined system of equations in which measurements of all secreted products and 
nutrients allow the direct calculation of fluxes. The choice in experimental design 
arises primarily from the amount of precision required for each measurement. In 
metabolic networks in which fluxes within the network must be measured, in addition 
to product secretion and nutrient uptake rates, one must determine which fluxes 
should be measured. There are no clear rules presently available for selecting the 
nutrients to be labeled and the intermediates to be measured. It has been suggested 
(Blum & Stein, 1982) that compounds with labeled carbon atoms that participate in 
a large number of reactions should be selected for measurement. However, even with 
these restrictions, there may be some sets of measurements which yield good calcula- 
ted results and others which give poor results. In this report, we present a mathemati- 
cal algorithm for identifying the reactions which would be the best choices for 
measurements, based on the assumption that the computed fluxes should have low 
sensitivity to errors in the experimental measurements. In part II of this series (Savi- 
nell & Palsson, 1992) we apply this algorithm to two important biological systems: 
a subset of metabolism ill Escherichia coli, and intermediary metabolism in the 
hybridoma cell. The usefulness of this method of analysis as a guide for experimental 
design is discussed. 

Mathematical Methods 

An example of the type of reaction network to be considered here is shown in Fig. 
1. The fluxes that represent transport cross the cell membrane are termed external 

fluxes and the reactions which occur entirely within the cell are termed internalfluxes. 
The primary characteristic of the systems considered here is that the number of 
reactions is greater than the number of compounds. The dynamic mass-balance for 
each compound in the network can be represented by the system of equations: 

dX 
- s . v - b  (I) 

dt 

where X is the vector of metabolite amounts per cell, S is the n x m stoichiometric 
matrix, n is the number of metabolites, v is the vector of m metabolic fluxes, and b 
is the vector of known substrate consumption rates, waste production rates, and 
biosynthetic fluxes. The element s~i is the stoichiometric coefficient of the ith com- 
pound in the jth reaction. Since the rate of volume expansion due to growth is slow 
compared to metabolic transients, we can assume that the following condition 

S .  o--h (2) 
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FIG. t. Example of a metabolic reaction network. Reactions td' and v2 are metabolic generation and 
degradation, respectively, and are termed #zternalfluxes. Reaction va involves transport across the cell 
membrane and is termed an externalflux. The biosynthetic demand for X~ is given by bh which is either 
known from the composition of  the cell and the growth rate, or can be measured directly. The stoichio- 
metric matrix for this system has one mass balance and three fluxes, so that two of  the three fluxes must 
be measured. 

holds. Since the matrix S is known from the structure of  the metabolic pathways 
and b is known from experimental data, this equation can be used to calculate the 
steady-state metabolic fluxes v. 

P A R T I T I O N I N G  OF F L U X E S  I N T O  M E A S U R E D  A N D  C O M P U T E D  F L U X E S  

In order to calculate the fluxes through the network, a minimum of (m-n)  fluxes 
must be measured, and the remaining n fluxes calculated. The vector v and matrix S 
can be partitioned as follows: 

v =  , s = [ s c l s A  

where v, are the ( m - n )  fluxes that are experimentally measured, and vc are the n 
fluxes to be calculated. Equation (:2) now becomes: 

S~v, + S , v ,  = b (3) 

and vc can be calculated by rearranging eqn (3): 

v~ = $ 2  1 . ( b  - S , v , ) .  ( 4 )  

Two preconditions exist for partitioning v and S. First, Sc must be non-singular, and 
second, the fluxes in v, must be measurable. Herein we put forth an additional 
criterion : the fluxes that are calculated, v~, should have low sensitivity to experimental 
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error in the measured flux values, re. This criterion can be justified as follows. If  a 
small error in a flux measurement is magnified greatly in the calculated fluxes, the 
calculated solution may be very inaccurate, and therefore meaningless. On the other 
hand, if the calculated solution depends on the data, and yet is relatively insensitive 
to error in the data, then one can have confidence in the accuracy of  the calculations. 

Let the matrix S be appended with a p x m matrix Ip, where p = m - n ,  and b is 
appended with a p x I vector bp, where bp= re: 

Fi] b, = , S, = 

such that: 

S, .  v =  b, (5) 
is true. 

The matrix Ip is constructed such that each row in Ip will have one and only one 
element with value l, and the column in which the 1 is located will be designated as 
the kth reaction. All other elements in the row will be zero, and all other elements 
in the kth column will be zero. The corresponding row of  bp will contain the experi- 
mental measurement of  the kth flux. For  example, for the stoichiometric matrix S 
corresponding to the network in Fig. l, S, may be formed such that: 

SII SI2 SI3 /)1 _ _  

where b2 is the measurement of  flux v,, b3 is the measurement of  flux v3, and v .=  (v,,  v~) T. 

M A X I M U M  S E N S I T I V I T Y  T O  E X P E R I M E N T A L  E R R O R  

The error in the data, represented by Ab,, will lead to an error in the calculations, 
represented by Ao. The relationship between the two, obtained from eqn (5), is: 

S,. Av= Ab,. (7) 
The following equations are used to estimate the maximum error that can occur in 
the calculated fluxes. 

From the property of  the matrix norm (Stewart, 1973) and from eqn (5) one 
obtains: 

llS, ll • Ilvll-> Ilb,[I. (8) 
Similarly, after rearranging eqn (7), one obtains: 

[ I S f ' l l  • IIAb, II > liAvl;. (9) 
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Multiplying the terms of  eqn (8) by the terms of  eqn (9) and rearranging yields: 

where 

IIAvll IIAb, II - - < C . -  (10) 
lit, l[ IIb, II 

c =  IIS, II. IIS,-'l[. (I 1) 
The fractional error in the calculated solution is given by IIAvll/llvll, and the 

fractional error in the data is given by IIAb, ll/llt,,tl. The quantity C, termed the 
condition number of matrix S,, is a measure of  the maximum sensitivity of  the solution 
v to errors in the data b,. Note that C is a function only of S,. The role of  the 
condition number in error analysis is derived and discussed thoroughly in (Wilkinson, 
1963), and in many other texts on linear algebra, (e.g. Stewart, 1973). 

The condition number C is thus a measure of  the upper bound of the sensitivity 
of  the calculated fluxes to error in experimental measurements in b,. In other words, 
C is a measure of  the possible error amplification. By changing the location of  the 
ls and 0s in lp, and calculating the condition number for each new St, one can 
determine the possible error amplification for each set of  fluxes to be measured. In 
the example given above, there are three different combinations of  fluxes possible, 
given by three different Ip: 

is s2 s 1 Ei s2 i3] rs s2 s ij 
i i j -  t o 0 ' 0 ' 1 

I 0 0 

where the first matrix is for v~ and vz measured, the second matrix is for vm and v3 
measured, and the third matrix is for v2 and v3 measured. The best combination of  
fluxes to be measured is that which gives S, with the lowest condition number, and 
thus the lowest sensitivity to error in data. The worst choice of  fluxes is given by 
the matrix with the highest condition number. Infinite-valued condition numbers 
represent flux combinations for which a computed solution is not possible. 

The value of  the condition number depends on the choice of  norm that is used. 
The norm is chosen according to the type of error description that is desired. Three 
of  the most commonly used norms are the 1-norm, the 2-norm, and the oo-norm 
(Stewart, 1973). When the oo-norm is used, IlAvll/llv[I represents the largest error in 
a single flux, normalized to the flux with the largest value (Stewart, 1973). This 
means of  error description is not useful here and a better description is given by the 
2-norm. When the 2-norm is used, IIAvll/llvfl represents the sum of  all the error 
normalized to the sum of all the fluxes. The error description provided by the 1- 
norm is similar to the 2-norm. The I- and 2-norms thus are measures of  the average 
error overall in the calculations. In this report, the condition number will be calcula- 
ted using the 2-norm, due to the significance of  the error interpretation and the 
widespread use of this norm. Results using other norms may differ from those shown 
here, due to the difference in error interpretation. 
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The 2-norms of S, and S,- i are given by (Strang, 1980) : 

IIS, II = 6. 

1 
IIS,- '  II cr 0 

where 6- and cr ° are the maximum and minimum singular values of S,, respectively. 
The condition number C can then be calculated by: 

6" 
C -  (12) 

o- 0 
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The value of  C obtained from eqn (i 2) is only an upper bound on the sensitivity. 
Because this is an upper bound, a set of fluxes with a high condition number has the 
potential to result in a more sensitive solution than the low-condition number set, 
although the high-condition number set will not necessarily be more sensitive than 
the low-condition number set. The actual sensitivity, R, of the calculated fluxes to 
the experimental data is defined by: 

IIAvll IIAb, tl 
- R . - -  ( 1 3 )  

IIvll IIb, ll 

where R must always be less than or equal to C. The actual sensitivity, R, is a 
function not only of  St, but also of  the values of the experimental measurements and 
the error, given by b, and Abt, respectively. 

The condition for R = C occurs when the inequalities in eqns (8) and (9) become 
equalities. The vectors b, . . . . .  Ab, ...... vm~, and Avmax, which satisfy these equalities 
are defined by: 

[Is,II • [lv~o~[l = lib, . . . .  II ( 1 4 )  

IIS7'11. IIAb,., . ,~ll = IIAv,.°=ll.  ( 1 5 )  

The values of bt and Ab, are obtained by the singular value decomposition of  St and 
St- i By the singular value decomposition theorem, S, can be decomposed as (Strang, 
1980) : 

S, = UIBW r 

where ]B is a diagonal matrix, with each element along the diagonal called a singular 
value, and U and W are orthonormal matrices. 

It is shown in the Appendix that a sufficient condition for eqn (14) to be true is 
when : 

b, . . . .  = a S , ~  (16 )  
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FIG. 2. (a) Illustration of the angles 0 and ~b for the example system in Fig. I. The biosynthetic 
demands and flux measurements are represented by b, and Ab, represents the error in the measurements. 
The vectors b,~,,.~ and Ab ..... .  given by eqns (16) and (17), result in R = C. The value of the biosynthetic 
demand, bt, is set to 7 and the value of the error in biosynthetic demand, Abe, is set to 6. The projection 
of b, and Ab, onto the plane [b , ( l )= y] is shown and 0 is the angle between these projections. Similarly, 
the projection of &b, and Ab,~,x onto the plane [Ab,(I) = 5 ] is shown and ~b is the angle between these 
projections. (b) The value of sensitivity/condition number as a function of the angle q~ between the 
projections of Ab, and Ab, . . . .  onto the plane [b, ( l )=0]  for the system given by eqn (18). The angle 
between the projections of b, and b . . . .  onto the plane [b,(I ) =0] is given by 0. (c) The value of sensitivity/ 
condition number as a function of 0 when ~b=0. 
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The parameter a is any scalar value, and ~ is the column of W that corresponds to 
the maximum singular value of S,. Similarly, eqn (15) is true when: 

At,,.,,,~ =/~,, ° (17) 

where u ° is the column of U that corresponds to the minimum value in lz and fl is 
any scalar value. Thus, the directions of bt and Ab, for which R is exactly equal to 
C, are given by eqns (16) and (17). 

The influence of b, and Ab, on R is illustrated by means of the example system 
illustrated in Fig. 1, where S, is given by: 

S, = 0 (18) 
0 

and b, is a 3 x 1 vector. The first element of b, is the biosynthetic demand, with the 
value b~, and the error in this demand, Ab,, has the value Abe. All possible directions 
of b, and Ab,, with the restriction that b,(1) = b~ and Ab,(l) = Abl, can be considered 
by independently varying the value of the second element of each vector and calculat- 
ing the third element, keeping the magnitudes constant. The actual sensitivity, R, is 
calculated for each b, and Ab, using eqn (13), and R is plotted as a function of two 
angles ~b and 0. As illustrated in Fig. 2(a), ~b is the angle between the projections of 
Ab, and Ab, ..... in the plane of Ab,(1) = Abt, and 0 is the angle between the projections 
of b, and b, ..... in the plane of b,( l)=bj .  

Figure 2(b) and (c) illustrates that both ~b and 0 influence the sensitivity. Although 
the maximum theoretical value of R/C is 1, this value will rarely occur in a biological 
system. The reason that R/C is small is that the values of Ab, ..... and b, ..... are given 
by the singular value decomposition of St, and thus most elements of these vectors 
are non-zero. However, many of the biosynthetic fluxes in b, have zero values, since 
not all metabolites are involved in biosynthesis. Hence, the physiological Abt and bt 
will always be displaced from Ab, ..... and b, . . . . .  causing R to be less than C. Figure 
2(b) and (c) demonstrates, for this example, that the condition number will always 
overestimate the actual sensitivity by at least a factor of 2, regardless of the values 
of the flux measurements and the measurement error. When systems with larger 
dimension are considered, the maximum value of the ratio R/C tends to decrease. 
However, as will be shown later, there is a correlation between the sensitivity R 
obtained using an estimate of b, and the condition number. Consequently, the condi- 
tion number can be used to estimate relative sensitivities between flux arrangements, 
even though the actual sensitivity may be much less than that given by the condition 
number. 

E F F E C T  OF E R R O R  D I R E C T I O N  

The values of/1, are characteristic of the system and the environment, while the 
values of Ab, are determined by the precision of the instruments and techniques used 
in measurement. Conseqently, the values of Ab, are essentially unknown. Since the 
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elements of Ab, represent errors in measurement that are mostly independent, the 
vector Ab, can theoretically have any direction in (m-n)  dimensional space. The 
magnitude of Ab, can be considered to be constant, since the magnitudes of Ab, and 
Av cancel in eqn (13). Thus, all possible directions of Ab, can be thought to be 
represented by all points on the surface of a sphere in (m-n)-dimensional space. 

Figure 3(a) illustrates the surface traced by Abt for the example system given by 
eqn (6). In this example the surface is a circle because only two measurements 
( m - n = 2 )  are needed. An even distribution of points on this surface is needed in 
order to determine the effect of the direction of the error vector, represented by each 
point, on the sensitivity. Each element of Ab, is assigned a random value, and the 
vector magnitude is calculated. All vectors with magnitude greater than 1 are dis- 
carded, and those with magnitude less than or equal to 1 are normalized to I, thus 
ensuring an even distribution of points. The sensitivity of the computed solution to 
the measured solution, for a particular experimental design given by S,, can be 
calculated for each of  these remaining error vectors. Since the objective is to deter- 
mine the most probable sensitivity when the measurement error is unknown, a fre- 
quency distribution is obtained from the calculated sensitivities, as shown in Fig. 

b~ Ab3 ( o ) ~ L~b2 

(b) 

FIG. 3. (a) Illustration of the surface traced by all possible directions of Ab,, for the example system 
given by eqn (6). Since only two fluxes must be measured for this example, the surface in this example is 
a circle in two-dimensional space. (b) A hypothetical frequency distribution of the actual sensitivities, R, 
calculated for each Ab,, where /~ represents the most probable sensitivity. 

3(b). The maximum value of this curve represents the most probable value of R. 
This procedure will be illustrated in detail using two biological models in part II of 
this series (Savinell & Palsson, 1992). 

EFFECT OF ADDITIONAL MEASUREMENTS 

The analysis presented above has assumed that only the minimum number of fluxes 
would be measured. In many instances, a greater number of fluxes are measured, in 
order to check for the consistency of the data and the accuracy of the metabolic 
network. If the number of fluxes measured is greater than m - n ,  the appended 
stoichiometric matrix is no longer square and is designated by S~, where 17 represents 
the number of additional measurements. The resulting set of mass balances is thus 
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an overdetermined set of  possibly inconsistent equations, where the best estimate of  
the fluxes, 0, are calculated using linear regression: 

STrS",O=STrb,. (19) 

This method of  solution is discussed in most linear algebra texts (e.g. Strang, 1980). 
From eqn (19) one can derive: 

IIA011 IISTrAb, II < C , .  - -  (20) 
11011 - IIS,"rb, II 

where 

C,  = IISTTSTII. II(STTS~)-'II. (21) 

In this derivation of  sensitivity, the error vector and the measurement vector are 
multiplied by $7 r, so that the interpretation of  C~ is somewhat different from the 
interpretation of  C. To compare the maximum possible sensitivity using excess meas- 
urements with the minimum number of measurements, we note that when 1/= 0, i.e. 
$7 = S,, then 

Co = IlS,rS, II. ll(S,rS,)-'ll = C 2 

is true. The value of  C, is calculated for 17 = 0, 1, 2 , . . . ,  m - (m - n) for the example 
systems in part II (Savinell & Paisson, 1992). 

The actual sensitivity of  the computed solution when excess flux measurements are 
made, R~, is defined analogous to eqn (20): 

IIAell IIS,"TAb, II 
• - - .  ( 2 2 )  

11011-R, iiS,,Tb, ii 

In order to calculate the upper bound on R,,  the following expression is used, 
analogous to eqn (17) : 

S,°rAb,.~, = flu ° (23) 

where u ° is the column of U corresponding to the smallest singular value of  the 
matrix S~rS~. 

D i s c u s s i o n  

The estimation of  steady-state fluxes in a biochemical network is usually obtained 
by measuring some of the fluxes, and using the mass-balance equations to compute 
the other fluxes. An algorithm is derived for estimating the sensitivity of  the computed 
fluxes to experimental error in the measured fluxes. The upper bound on this sensitiv- 
ity is given by the condition number, which is a function only of  stoichiometry. If  
estimates of  the fluxes are available before the experiment is performed, then a more 
realistic sensitivity can be calculated. The experiment is then designed such that the 
combination of  fluxes which yield low sensitivity is selected for measurement. This 
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algorithm will be illustrated with two model systems, E. colt and a hybridoma cell 
line, in part II o f  this series. 

This research was supported by National Science Foundation grant BCS-9009389. The 
authors thank James S. Freudenberg for his help with the derivation in the Appendix. 
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APPENDIX 

Derivation of Conditions for R = C 

T h e  o b j e c t i v e  o f  this  p r o o f  is to  s h o w  t h a t  the  e x p r e s s i o n  fo r  Ab, . . . .  g iven  by e q n  
(16)  is a suff ic ient  c o n d i t i o n  fo r  eqn  (14) to  be  t rue.  B e f o r e  p r e s e n t i n g  the  p r o o f  we  
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note that the rearrangement of eqns (5) and (14) yields: 

IIS,v., .~ll = IlS,II • IIo=.~ll = IIb , , ,~ l l .  ( g . l )  

The singular value decomposition (SVD) of S, is given by: 

S, = UEW r =  Ztraiw r. (A.2) 

Since U and W r are orthonormal matrices (by the SVD theorem), the following can 
be obtained from eqn (A.2): 

S,W = UE (A.3)  

S,wi = cr,~i. (A.4) 

Let O be the largest singular value of St, and ti and • be the corresponding columns 
of U and W, respectively. From the definition of the 2-norm, and using the SVD 
theorem, one can derive the following (Strang, 1980): 

lISA = O. (m.5) 

Further, since U and W r are orthonormal matrices, the following is true: 

Iluill = IIw, II = 1. (m.6) 

We begin the proof by assuming that v,~.., is given by: 

v,,,,x = a • (A.7) 

and thus 

b,.max = S,v,~.# = aSia. 

Combining eqns (A.4) and (A.8), we obtain: 

S t v , , , a x  = ot 0~. 

Using eqn (29), we obtain from eqn (A.9): 

l [S ,v . , .x  1} = a e .  

Inserting eqn (28) into the previous equation gives: 

l is ,t , , , . . , l l  = a IIS, ll. 

From eqns (A.6) and (A.7): 

(A.8) 

(A.9) 

( A .  1 o )  

and inserting this expression for a into eqn (A.10) gives 

IlS, v,.°..ll = IIS, II. I Iv . , .A  = IIb,~.~ll  ( m . 1 2 )  

which is eqn (A. 1). Therefore, b,..,.~ = aS,~ is a sufficient condition for eqn (I4) to 
be true. 

llVm,~l[=a (A.II) 
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The derivation of the expression for Ab,.,,,~ given by eqn (17), which must satisfy 
eqn (15), proceeds along similar lines. The singular value decomposition of S, -I is 
given by: 

S, -I = W~='U r. (A.13) 

It can be shown, by analogy with the above derivation, that 

Ab,.m,~ = f lu ° (A. 14) 

where u ° is  the column of U corresponding to the maximum value of r.-i .  The 
maximum value of ~ -  ' corresponds to the minimum singular value of r.. Thus, u ° 

corresponds to the minimum singular value of St. 
It can also be proven that Ab,.,,~ is orthogonal to b,.,,~, as illustrated in Fig. 2. 


