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This supplementary information contains a total of nine supplementary figures supporting
the main manuscript. The supplementary figure titles are as follows:

SI Figure 1:  Static and dynamic map of RNA polymerase binding.

SI Figure 2:  Comparison of RNAP-guided transcript segment (RTS) to change point
algorithm and running-window approach.

SI Figure 3:  Increase of genomic coverage and accuracy by iterative integration.

SI Figure 4:  Discovery of new transcripts.

SI Figure 5:  Flowcharts of the molecular biology tool box for the elucidation of the
organizational components.

SI Figure 6:  Overlapping pORFs.

SI Figure 7:  Number of unique peptides from pORFs with accurate and inaccurate
boundaries.

SI Figure 8:  Use of alternative TSSs.

SI Figure 9:  5’UTR length of various functional categories.
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Supplementary Figure 1 | Static and dynamic map of RNA polymerase binding.
Determination of the binding locations of RNA polymerase was nearly condition
dependent. Although we observed the differential binding levels of RNA polymerase
under different conditions, the binding locations (i.e., promoter regions) were nearly
identical. (a, b) Examples of RNA polymerase (RNAP) binding under different growth
conditions (log phase, red; heat-shocked, grey; stationary phase, orange). Binding of
RNAP was determined by the static map although regions of log phase cells or log phase
and heat-shocked cells did not show RNAP binding under the dynamic map. Regions of
differential binding are highlighted in red. (¢) Static RNAP-binding maps of log phase



(red) and leucine condition (blue). We observed differential RNAP-binding levels,
however, the binding locations of RNAP was nearly identical.
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Supplementary Figure 2 | Comparison of RNAP-guided transcript segment (RTS) to
change point algorithm and running-window approach. Integration of RNA
polymerase binding regions (RBRs) with binary transcript calls (BT) lead to RTSs. RTS,
based on integration of two experimental derived genome-wide data sets, yielded the best
results when compared to change point algorithm (CP) and running window approach
(RW). Two examples (a, b), representative for all data, demonstrate that determination of
transcription fragments using CP resulted in too many fragments (too sensitive), whereas
the RW yielded too few fragments (less sensitive).
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Supplementary Figure 3 | Increase of genomic coverage and accuracy by iterative
integration. Iterative integration of transcripts, derived from various growth conditions,
with RNA polymerase binding regions (RBRs) resulted in increased genomic coverage
and accuracy (a, b, ¢), genes of interest are highlighted in red. Iteration of data from
various growth conditions (log phase, red; heat-shocked, blue; stationary phase, orange)
also allowed for determination of condition-specific transcripts, such as yjcC (b) and
vbaE (c) from stationary growth phase, and soxR (b) from heat-shocked cells.
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Supplementary Figure 4 | Discovery of new transcripts. New transcripts were
determined by systematic and iterative integration of RNA polymerase binding regions
(RBRs) with binary transcript calls (BT) resulting into RNAP-guided transcript segments
(RTSs). New transcripts (highlighted in red) were discovered on opposite strands (a, b),
as well as in intergenic regions (c, d).
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Supplementary Figure S | Flowcharts of the molecular biology tool box for the
elucidation of the organizational components. Various genome-scale methods were
deployed and developed to determine the meta-structure. Methods are depicted here
include (a) transcription profiling, (b) transcription start site (TSS) profiling, (¢)
chromatin immunoprecipitation coupled to microarrays (ChIP-chip), and (d) proteomics.
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Supplementary Figure 6 | Overlapping pORFs. (a) Frequency of peptide detection in
the region where overlapped pORFs were found, (b) Examination of translation
directionality of the overlapped pORFs based on the mRNA transcript profiles. The red

arrows indicate false positives that were detected as pORFs.
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Supplementary Figure 7 | Number of unique peptides from pORFs with accurate
and inaccurate boundaries. Among 803 pORFs mapped to the validated ORFs (from
EcoGene), a total of 507 pORFs showed accurate translation start/stop positions (filled
circle). pPORFs with non-matching translation start positions (296 pORFs) exhibited poor
peptide coverage (open circle). Due to this coverage limitation, additional methods (e.g.,
proteomics with N-terminal modification) have to be applied to obtain a more
comprehensive and accurate ORF map at a genome-scale.
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Supplementary Figure 8 | Use of alternative TSSs. (a) The serd gene, serC-aroA
operon, and gltBDF operon have multiple experimentally verified TSSs. We detected the
dominant TSS (3,056,478) for the ser4 promoter, which is highly activated by the
transcription factor Lrp. Another experimentally confirmed TSS (3,056,571) is likely to
be utilized less under this growth condition. The transcription factor Lrp also activates
one experimentally verified TSS (956,818) of the serC promoter, which was detected as a
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dominant TSS in this study. In addition, we found another TSS (956,802) at the serC
promoter. The other previously confirmed TSS (3,352,531) at the g/tB promoter was
detected as a dominant TSS with Lrp-binding signal. (b) List of TSSs regulated by the
transcription factor Lrp. We observed the alternative TSSs at the various promoter
regions regulated by Lrp.
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Supplementary Figure 9 | 5’UTR length of various functional categories. (a)
Distribution of 5’UTR shows a median length maximun of ~36 bp, (b) comparison of

5’UTR length (in base pairs) showed no difference between different functional
categories.
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