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Bernhard Palsson

Hougen Lecture #3

Nov 2nd, 2000

Modeling philosophy:
Of single points and solution spaces

LECTURE #3

The first two lectures discussed the high-throughput technologies and the
subsequent determination of cellular component catalogs and reconstruction of
biochemical reaction networks. In the third lecture we begin to discuss how one
describes the function of such networks in systemic and  mathematical terms.
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Lecture #3: Outline

• Insufficient  data
• Governing constraints
• Successive imposition of constraints
• Solution spaces and single point
• The connectivity constraints

– The stoichiometric matrix, S
– The four fundamental subspaces of S
– Pools and pathways

OUTLINE

In spite of the impressive amounts of data that are being generated about cells
and their components we do not have all the data that is needed to construct
detailed mathematical models of their integrated function. The approaches often
used in physicochemical and engineering sciences of stating governing
fundamental laws and building detailed mathematical models will thus not
work, at least not initially, for the construction of mathematical models of
reconstructed biochemical reaction networks.   We cannot thus calculate a
single solution.

An alternative approach must be developed.  The network maps allow us to
impose systemic and component constraints on the function of the network as a
whole.  Thus we can eliminate behaviors but we cannot calculate precise ones.
The more governing constraints that we can state the smaller the solution spaces
become.

The lecture then ends with a detailed discussion of the consequences of the
stoichiometric constraints.
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Coping with incomplete constraints:
solution spaces vs. single points

--Cannot describe cellular networks in the
same detail as we are used to in the P/C
sciences

--However, we can subject the networks to
known constraints and analyze them given
these constraints

3 Problems

•P/C laws may not apply

•Kinetic constraints not known

•Even if they were, they

  1) Change with time-->evolution

  2)  Not the same from one individual to the next-->SNPs
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Factors Constraining Metabolic Function

• Connectivity:
– Systemic stoichiometry

• Capacity:
– Maximum fluxes

• P/C factors:
– osmotic pressure, electro-neutrality, solvent capacity,

molecular diffusion

• Rates:
– Mass action, Enzyme kinetics, Regulation

CONSTRAINTS

Metabolism is subject to a number of constraints.  First, fluxes are balanced in
the steady state.  For many dynamic metabolic states, the solution does not
move far from the steady state.  There is an upper limit on the amount of flux
that is achievable through every reaction.  First there is an upper P/C constraint,
a crowding constraint limiting the amount  of enzyme present and finally upper
limits may be derived from expression and proteomic profiles.

There are a number of physico-chemical constraints that a cell must operate
under.  These include balancing of osmotic pressure (unless there is a cell wall),
maintaining electro-neutrality since charges cannot be separated, the limited
solvent capacity of water (i.e. the 30% of cells that is biomass must be divided
amongst the thousands of cellular constituents) , and the rate of molecular
diffusion limits almost all cellular functions.

Finally, the kinetic parameters that have evolved and the imposed regulatory
mechanisms significantly influence the flexibility of the network. These are
flexible and the cell can adjust them.

The connectivity and P/C constraints are ‘hard’ in the sense that the cell cannot
manipulate them, the capacity constraints represents fixed upper limit
constraints that can be down regulated, while the kinetics may be quite flexible
and adjustable by the cell through a evolutionary process.
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Factors Constraining Metabolic Function

• Connectivity:
– Systemic stoichiometry
– Sv=0

• Capacity:
– Maximum fluxes
– vi < maximum value

HARD CONSTRAINTS

In these lectures we will impose two sets of constraints  to study possible
metabolic functions.

These are the connectivity constraints and the capacity constraints.  In Lecture
#3 we will cover the consequences of the imposition of the stoichiometric
constraints.
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Incomplete Set of Metabolic Constraints

• Incomplete constraints

• Solution space
• Complete Knowledge

• Solution a single point

F
lu

x A

FluxB

F
lu

x C

F
lu

x A

FluxB

F
lu

x C

Need to refine constraints

CONSEQUENES OF OUR MODELING PHILOSPHY

Normally when we solve a mathematical problem or construct a mathematical
model we are looking for ‘the solution.’  The search for such a solution comes
down to a detailed and complete problem statement, and then the use of
mathematical or numerical methods to find ‘the’ solution.  It is represented as a
single point in the left side of the figure.

However, we are in a situation where we cannot fully define and describe the
interior of a cell in all its details.  We thus must be content with ‘bracketing’ the
solution. The imposition of governing constraints then eliminates impossible
solutions but leaves a range of possible solutions.  This range is represented by a
solution space that contains all these possible solutions.  The more applicable
constraints that we find the smaller the solution space.
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Approach:
application of
successive
constraints
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Reaction directions
and convex analysis vi ≥  0

S • v = 0Stoichiometry and 
linear algebra

GRAPHICAL ILLUSTRATION OF THE SUCCESSIVE APPLICATION
OF GOVERNING CONSTRAINTS

Some years ago it was common to think of each gene/gene product in a cell as
an independent element.  Genetic engineering came into being and the
expectation was that if one would splice a gene into a genome a trait that
corresponding to that gene product would be produced.  Mathematically, one
can represent this as an n-dimensional space (where n is the number of gene
products) and any point in this space could be attained.

However, every gene product works in the context of many others and is thus
constrained in its activity.  For instance once can over express an  enzyme in a
linear pathway and get no increase in flux down the pathway since the flux
through all the steps has to be the same.  Such connectivity, or stoichiometric
constraints reduce the accessible space to a subspace, or a ‘hyper-plane’ as
illustrated.  The ‘size’ of this hyper plane is substantially smaller than the n-
dimensional space.  Thus these constraints limit the attainable behaviors.

A hyper-plane is infinite in all directions.  If we consider all reactions to have
positive fluxes (so reversible reactions are represented as two irreversible
reactions) the hyper-plane is converted to a semi-finite conical solution space.
If we then impose the maximum flux constraints then the solution space is
‘capped off’ and becomes a ‘lock-box’ for the solution.  This lock box is formed
based on hard constraints. Certain kinetic constraints drive the solution to the
edge as shown later.  These represent adjustable constraints.
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The Stoichiometric Matrix

THE MATRIX S

For the rest of this lecture we shall discuss the consequences of the connectivity
constraints in metabolism, namely stoichiometry
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Stoichiometric Coefficients:
• Integral numbers

• Universal biochemical constants

chemical reaction aA + cCaA + cC  

vvii
eE + hHeE + hH
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A -a

B 0

C -c

D 0

E +e

F 0

G 0

H +h

Representation as a
column in a matrix

EACH COLUMN IN THE STOICHIOMETRIC MATRIX
CORRESPONDS TO A PARTICUALR METABOLIC BIOCHEMICAL

REACTION

The stoichiometric coefficients:  They are integers (a,c,e,h in the example
given) that represent the number of molecules of chemical species (A,C,E,H in
the examples) that are transformed in this particular chemical reaction. These
coefficients are constants (i.e. are not condition dependent, that is functions of
temperature, pressure, pH, etc).  Further they are biologically universal,  that is
the same metabolic reaction proceeds the same way in all cells; for instance
hexokinase always catalyzes the reaction:

Glucose + ATP --> Glucose-6-phosphate + ADP

Formation of a column in S:  Each metabolite has a row in the stoichiometric
matrix, and each reaction has a column.  The stoichiometric coefficients are
used to form a column, with the stoichiometric coefficient that corresponds to a
particular metabolite appearing in the row that it corresponds to.  If a metabolite
is formed by the reaction the coefficient has a positive sign, if it is consumed by
the reaction the stoichiometric coefficient appears with a negative sign.  All
other rows (corresponding to metabolites that do not participate in the reaction)
are zero.
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From the genotype to the stoichiometric matrix

VA VBC VD1 VD2

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

gene A

enzyme A

gene B   gene C

enzyme complex B/C

gene D

enzyme D

S=

one gene
one enzyme
one reaction

two genes
one enzyme
one reaction

one gene
one enzyme
two reactions

# of genes

# of enzyme 
complexes

# of enzyme
catalyzed reactions

THE NUMBER OF REACTIONS IN A METABOLIC GENOTYPE IS
NOT THE SAME AS THE NUMBER OF GENES IN THE GENOTYPE

There is not a one-to-one correspondence between the number of genes that are
associated with metabolism and the number of chemical transformations that
take place.  This difference is due to several factors.

First, many enzymes are oligomeric complexes that contain more than one
protein chain.  These complexes are formed by non-stoichiometric binding, or
association of several different protein molecules.  Hemoglobin, being a
tetramer of two alpha and two beta globins is perhaps the best know example of
a protein oligomer.

Second, enzymes can catalyze  more than one chemical reaction.  This feature is
often referred to as substrate promiscuity.  These chemical transformations tend
to be similar.

These features give rise to a different number of genes from the number of
enzymes (or enzyme complexes) and the number of chemical reactions that take
place.  All of these situations can though be accounted for with the
stoichiometric matrix as illustrated.
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Redundancy and pleiotrophy  in the
stoichiometric matrix

VA VA VD1 VD2

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

gene A

enzyme A

gene B  

enzyme B

gene D

enzyme D

S=

two genes,   two enzymes
one reaction

one gene, one enzyme
two reactions
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Partitioning of the flux vector into
internal and external fluxes

• External fluxes are those fluxes that flow across the
cellular boundary.
– These are denoted by bi. These fluxes are often accessible to

measurement or can be estimated based on experimental data.
The sign convention adopted for these fluxes is that they are
positive if mass is flowing out of the cell.

• Internal fluxes are those that take place with in the cell
(within our system boundary).
– These fluxes are hard to measure, but often we will know their

maximum value.

PARTITIONING THE FLUX VECTOR

We draw a systems boundary around the metabolic system that we are interested
in.  Thus there will be reactions that take place within the system and those that
exchange molecules with the surroundings.  We partition the flux vector
accordingly.

Normally the system boundary is drawn such that the metabolic system being
considered is the entire metabolic system in a cell.  Then the system boundary
effectively becomes the cell membrane.  In other cases we may be interested in
an organelle, such as the mitochondrion, and we will draw our system boundary
around it.  In yet other cases we draw system boundaries around certain sectors
of metabolism, such as the fueling reactions, or the amino acid synthetic
pathways.  In such cases the system boundary is a conceptual one and not a
physical one.

The concept of a ‘system boundary’ is frequently used in the physical and
engineering sciences, while for life scientists reading these notes may be a new
one.  It may take some getting used to.
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Chemical Reactions vs. Fluxes through them
• The columns of the stoichiometric matrix represent the
reactions (n in number)
• The actual reaction rates, or the fluxes that take place through
these reaction are denoted by a v
• The assignment of a flux through a reaction can be performed
by a simple matrix multiplication
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METABOLIC REACTIONS AND THE FLUXES THROUGH THEM

The annotated sequence and biochemical knowledge of the metabolic enzymes
lead to the definition of the stoichiometric matrix.  Each column in this matrix
represents a particular metabolic reaction.  However, the flux though a reaction
is highly dependent on what the cell is doing.  For instance, if an amino acid is
available to the cell, it will import it and not synthesize it.  Although the cell is
capable of carrying out all the reactions that lead to the synthesis of the amino
acid they are not used.  The flux through them is zero.  Later we will see how
the cell regulates flux (either by kinetic means or by regulation of gene
expression), but for now we introduce the product of the stoichiometric matrix
and the flux vector.  The matrix is a constant, while the flux vector is a variable.
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The number of genes, enzymes and metabolic
reactions for some gram-negative bacteria

    E. coli   H. influ. H. pylori Yeast

Total # of Genes         4288      1743    1590 6259
# of metabolic genes 660        400    290 697
# of metabolic enzymes 697        412    272 626
# of metabolic reactions 739        461    381 1212
# of metabolites 442        367    332 569

ACTUAL NUMBERS FOR ACTUAL ORGANISMS

Several in silico genome-scale metabolic maps have been reconstructed.  This
slide shows actual numbers for three gram-negative bacteria.  E. coli is a free
living organism that can live off of several different individual carbon sources.
E. coli has thus been called the ‘complete’ organic chemist as it can synthesize
all the chemical structures that it needs for its biomass synthesis. In sharp
contrast, H. influenzae and H. pylori are human pathogens that require several
different substrates to grow.
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The Stoichiometric Matrix as a Metabolic Map

gene        enzyme            flux     rxn
mglA, maglB  galactose transporter    v1      A    B
galT         uridyltransferase         v2       B    C  
galK         galactokinase             v3       B    D
........            ................             ..        ........
........            ................             ..         ........

Genetic Content

A B C

D

E

v ♦  Internal Flux
b ♦  Exchange Flux

System Boundary

b1

b2

b3

b4

v1 v2

v3

v4 v5

v6

v7

Biochemical Reaction Network

TRANSLATION OF THE STOICHIOMETRIC MATRIX INTO A
METABOLIC MAP

Thus we can translate the genomics and biochemistry of a metabolic reaction
network directly into the realm of linear algebra in the form of a stoichiometric
matrix.  Beginning with the gene products of a system we can determine the
inter-conversions of metabolites which occur and represent this in the form of a
stoichiometric matrix to complete the translation.  Within the stoichiometric
matrix lies all of the structural information and the architecture of the network.
The word structure here is not used to denote the physical structure but the
structure of a network.

The stoichiometric matrix is a connectivity matrix that ties all the metabolites,
the ‘nodes,’  in the network together, where the ‘edges’ or ‘connections,’ are the
metabolic reactions.  The stoichiometric matrix is thus a compact mathematical
representation of a metabolic map.  These maps give us a visual, and easier to
understand, representation of the metabolic network in a cell.
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E. coli in silico Metabolic Genotype
Central Metabolism (EMP, PPP, 
TCA cycle, Electron transport) 

aceA, aceB, aceE, aceF, ackA, acnA, acnB, acs, adhE, agp, appB, appC, atpA, atpB, atpC, atpD, atpE, atpF, atpG, atpH, atpI, cydA, cydB, cydC, cydD, cyoA, cyoB,
cyoC, cyoD, dld, eda, edd, eno, fba, fbp, fdhF, fdnG, fdnH, fdnI, fdoG, fdoH, fdoI, frdA, frdB, frdC, frdD, fumA, fumB, fumC, galM, gapA, gapC_1, gapC_2, glcB, glgA
glgC, glgP, glk, glpA, glpB, glpC, glpD, gltA, gnd, gpmA, gpmB, hyaA, hyaB, hyaC, hybA, hybC, hycB, hycE, hycF, hycG, icdA, lctD, ldhA, lpdA, malP, mdh, ndh, 
nuoA, nuoB, nuoE, nuoF, nuoG, nuoH, nuoI, nuoJ, nuoK, nuoL, nuoM, nuoN, pckA, pfkA, pfkB, pflA, pflB, pflC, pflD, pgi, pgk, pntA, pntB, poxB, ppc, ppsA, pta, pur
pykA, pykF, rpe, rpiA, rpiB, sdhA, sdhB, sdhC, sdhD, sfcA, sucA, sucB, sucC, sucD, talB, tktA, tktB, tpiA, trxB, zwf, pgl(Fraenkel, 1996), maeB(Fraenkel, 1996)  

Alternative Carbon Source adhC, adhE, agaY, agaZ, aldA, aldB, aldH, araA, araB, araD, bglX, cpsG, deoB, deoC, fruK, fucA, fucI, fucK, fucO, galE, galK, galT, galU, gatD, gatY, glk, glpK, 
gntK, gntV, gpsA, lacZ, manA, melA, mtlD, nagA, nagB, nanA, pfkB, pgi, pgm, rbsK, rhaA, rhaB, rhaD, srlD, treC, xylA, xylB 

Amino Acid Metabolism adi, aldH, alr, ansA, ansB, argA, argB, argC, argD, argE, argF, argG, argH, argI, aroA, aroB, aroC, aroD, aroE, aroF, aroG, aroH, aroK, aroL, asd, asnA, asnB, 
aspA, aspC, avtA, cadA, carA, carB, cysC, cysD, cysE, cysH, cysI, cysJ, cysK, cysM, cysN, dadA, dadX, dapA, dapB, dapD, dapE, dapF, dsdA, gabD, gabT, gadA, 
gadB, gdhA, glk, glnA, gltB, gltD, glyA, goaG, hisA, hisB, hisC, hisD, hisF, hisG, hisH, hisI, ilvA, ilvB, ilvC, ilvD, ilvE, ilvG_1, ilvG_2, ilvH, ilvI, ilvM, ilvN, kbl, ldc
leuA, leuB, leuC, leuD, lysA, lysC, metA, metB, metC, metE, metH, metK, metL, pheA, proA, proB, proC, prsA, putA, sdaA, sdaB, serA, serB, serC, speA, speB, speC,
speD, speE, speF, tdcB, tdh, thrA, thrB, thrC, tnaA, trpA, trpB, trpC, trpD, trpE, tynA, tyrA, tyrB, ygjG, ygjH, alaB(Reitzer, 1996), dapC(Greene, 1996), pat(McFall an
Newman, 1996), prr(McFall and Newman, 1996), sad(Berlyn et al., 1996), Methylthioadenosine nucleosidase(Glansdorff, 1996), 5-Methylthioribose kinase(Glansdorf
1996), 5-Methylthioribose-1-phosphate isomerase(Glansdorff, 1996), Adenosyl homocysteinase(Matthews, 1996), L-Cysteine desulfhydrase(McFall and Newman, 
1996), Glutaminase A(McFall and Newman, 1996), Glutaminase B(McFall and Newman, 1996) 

Purine & Pyrimidine Metabolism add, adk, amn, apt, cdd, cmk, codA, dcd, deoA, deoD, dgt, dut, gmk, gpt, gsk, guaA, guaB, guaC, hpt, mutT, ndk, nrdA, nrdB, nrdD, nrdE, nrdF, purA, purB, purC, 
purD, purE, purF, purH, purK, purL, purM, purN, purT, pyrB, pyrC, pyrD, pyrE, pyrF, pyrG, pyrH, pyrI, tdk, thyA, tmk, udk, udp, upp, ushA, xapA, yicP, CMP 
glycosylase(Neuhard and Kelln, 1996) 

Vitamin & Cofactor Metabolism acpS, bioA, bioB, bioD, bioF, coaA, cyoE, cysG, entA, entB, entC, entD, entE, entF, epd, folA, folC, folD, folE, folK, folP, gcvH, gcvP, gcvT, gltX, glyA, gor, gshA, 
gshB, hemA, hemB, hemC, hemD, hemE, hemF, hemH, hemK, hemL, hemM, hemX, hemY, ilvC, lig, lpdA, menA, menB, menC, menD, menE, menF, menG, metF, mut
nadA, nadB, nadC, nadE, ntpA, pabA, pabB, pabC, panB, panC, panD, pdxA, pdxB, pdxH, pdxJ, pdxK, pncB, purU, ribA, ribB, ribD, ribE, ribH, serC, thiC, thiE, th
thiG, thiH, thrC, ubiA, ubiB, ubiC, ubiG, ubiH, ubiX, yaaC, ygiG, nadD(Penfound and Foster, 1996), nadF(Penfound and Foster, 1996), nadG(Penfound and Foster, 
1996), panE(Jackowski, 1996), pncA(Penfound and Foster, 1996), pncC(Penfound and Foster, 1996), thiB(White and Spenser, 1996), thiD(White and Spenser, 1996)
thiK(White and Spenser, 1996), thiL(White and Spenser, 1996), thiM(White and Spenser, 1996), thiN(White and Spenser, 1996), ubiE(Meganathan, 1996), 
ubiF(Meganathan, 1996), Arabinose-5-phosphate isomerase(Karp et al., 1998), Phosphopantothenate-cysteine ligase(Jackowski, 1996), Phosphopantothenate-cystein
decarboxylase(Jackowski, 1996), Phospho-pantetheine adenylyltransferase(Jackowski, 1996), DephosphoCoA kinase(Jackowski, 1996), NMN 
glycohydrolase(Penfound and Foster, 1996) 

Lipid Metabolism accA, accB, accD, atoB, cdh, cdsA, cls, dgkA, fabD, fabH, fadB, gpsA, ispA, ispB, pgpB, pgsA, psd, pssA, pgpA(Funk et al., 1992) 
Cell Wall Metabolism ddlA, ddlB, galF, galU, glmS, glmU, htrB, kdsA, kdsB, kdtA, lpxA, lpxB, lpxC, lpxD, mraY, msbB, murA, murB, murC, murD, murE, murF, murG, murI, rfaC, rfaD, 

rfaF, rfaG, rfaI, rfaJ, rfaL, ushA, glmM(Mengin-Lecreulx and van Heijenoort, 1996), lpcA(Raetz, 1996), rfaE(Raetz, 1996), Tetraacyldisaccharide 4’ kinase(Raetz, 
1996), 3-Deoxy-D-manno-octulosonic-acid 8-phosphate phosphatase(Raetz, 1996) 

Transport Processes araE, araF, araG, araH, argT, aroP, artI, artJ, artM, artP, artQ, brnQ, cadB, chaA, chaB, chaC, cmtA, cmtB, codB, crr, cycA, cysA, cysP, cysT, cysU, cysW, cysZ, 
dctA, dcuA, dcuB, dppA, dppB, dppC, dppD, dppF, fadL, focA, fruA, fruB, fucP, gabP, galP, gatA, gatB, gatC, glnH, glnP, glnQ, glpF, glpT, gltJ, gltK, gltL, gltP, gl
gntT, gpt, hisJ, hisM, hisP, hisQ, hpt, kdpA, kdpB, kdpC, kgtP, lacY, lamB, livF, livG, livH, livJ, livK, livM, lldP, lysP, malE, malF, malG, malK, malX, manX, manY,
manZ, melB, mglA, mglB, mglC, mtlA, mtr, nagE, nanT, nhaA, nhaB, nupC, nupG, oppA, oppB, oppC, oppD, oppF, panF, pheP, pitA, pitB, pnuC, potA, potB, potC, 
potD, potE, potF, potG, potH, potI, proP, proV, proW, proX, pstA, pstB, pstC, pstS, ptsA, ptsG, ptsI, ptsN, ptsP, purB, putP, rbsA, rbsB, rbsC, rbsD, rhaT, sapA, sapB
sapD, sbp, sdaC, srlA_1, srlA_2, srlB, tdcC, tnaB, treA, treB, trkA, trkG, trkH, tsx, tyrP, ugpA, ugpB, ugpC, ugpE, uraA, xapB, xylE, xylF, xylG, xylH, fruF(Postma e
al., 1996), gntS(Lin, 1996), metD(Greene, 1996), pnuE(Penfound and Foster, 1996), scr(Postma et al., 1996) 

 

THE E. COLI METABOLIC GENOTYPE

The list of metabolic genes that are found on the E. coli K-12 genome is shown.
These genes are categorized into different classes depending on the part of
metabolism in which they participate.

The lowest group represents the transporters, or the b fluxes.

The enzymes indicated in red represent enzymatic activities that have been
found to be in E. coli by biochemical means but the corresponding gene, or
ORF, has not been located on the genome.
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Escherichia coli K-12 Metabolic Map

THE METABOLIC MAP REPRESENTATION OF THE ESCHERICHIA
COLI K-12 METABOLIC GENOTYPE

The metabolic map of the E. coli K-12 metabolic genotype divided into
metabolic sectors based on a biochemical rationale:

Gray: Alternative carbon source metabolism

Light gray:  The core metabolic pathways

Orange: Amino acid biosynthesis

Green: Vitamin and co-factor metabolism

Yellow: Nucleotide synthesis

Blue: Cell wall synthesis

Purple: Fatty acid synthesis

Not all the 720 reactions are shown.  Highly connected metabolites, such as
ATP, PEP and pyruvate are likened to dozens of reactions.  Showing all of these
connections would make this representation visually unattractive.  However,
these connections should not be overlooked as they play a key role in the
stoichiometric characteristics of metabolism.
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SOME CONNECTIVITY PROPERTIES OF THE STOICHIOMETRIC
MATRIX

As illustrated above the stoichiometric matrix is a connectivity matrix that
connects all the metabolites in a defined metabolic system.  We now introduce
some of its connectivity properties:

1.  The participation number.  Metabolites can participate in several metabolic
reactions.  The number of metabolic reactions that a metabolite participates in
can be obtained by simply summing up the number of  non- zero elements in the
row that corresponds to the metabolite.  Note that all internal metabolites must
have a participation number of two or more.  If not there is a dead end in the
network.  This feature can be used to curate and diagnose genome annotation, as
being either incomplete or erroneous.  External metabolites typically will have
only a single reaction associated with them, namely membrane transport.

2. The number of molecules participating in a particular metabolic reaction can
be obtained by simply summing up the absolute value of all the stoichiometric
coefficients that appear in a column.  The most frequent number is 4.
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Example calculation of participation numbers
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CALCULATION OF PARTICIPATION NUMBERS

This slide shows a calculation of the participation number for the simple
reaction schema that we have been using.  D is the most highly connected
metabolite participating in five reactions, while A is the least, participating in
the minimum number of two reactions.
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Reaction Network Connectivity

1

10

100

1000

1 10 100 1000

Metabolites

R
ea

ct
io

n
s

E. coli

H. influenzae

H. pylori

S. cerevisiae
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ATP 160 115 80 157
PI 140 103 60 149

ADP 137 102 65 136
CO2 63 40 36 53
PPI 56 40 38 54

NADP 41 32 34 42
GLU 48 30 24 43

NADPH 39 31 33 40
NAD 48 25 16 47
PYR 53 23 16 32

NADH 43 22 14 42
NH3 41 22 18 40
COA 31 19 20 25
AMP 27 17 14 27
AKG 25 19 15 24

ACCOA 22 10 13 17
PEP 23 10 6 17
ASP 18 11 12 13
ACP 13 13 16 11
GLN 16 10 10 14

Common Metabolites
Number of Reactions

Metabolite

A B

N=2

N=4

THE PARTICIPATION NUMBERS FOR FOUR METABOLIC MAPS

The 436 metabolites in the E. coli K-12 metabolic genotypes all have a
participation number associated with them.  Here we have calculated them all
and rank ordered the metabolites according to the number of reactions that they
participate in.  This data must be plotted on a log-log scale in order to see the
entire range of participation numbers.

ATP is the most highly connected metabolite in  E. coli K-12.  It participates in
161 of the 720 reactions, about one in five reactions. Similarly, ADP and Pi

participate in a similar number of reactions.  Thus high-energy phosphate
metabolism tightly connects the entire metabolic network.  Glutamine, the
central metabolite of nitrogen metabolism participates in 40+ reactions, and PEP
and pyruvate are also highly connected at 25 and 55 respectively. The redox
carriers participate in a few dozen reactions.  It is therefore not surprising that
metabolic regulation must be focused on maintaining the concentrations of these
metabolites within a narrow range.  Otherwise the entire system would be
influenced.

The majority of the metabolites, 198 of the 426, participate in only two
reactions, one that forms them and one that degrades them.
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Linked Nodes

THE NUMBER OF MOLECULES THAT PARTICIPATE IN THE
REACTIONS IN THE ESCHERISCHIA COLI K-12 METABOLIC

GENOTYPE

This histogram shows the number of reactions in E. coli that have 2,3,4, etc
molecules participating in the reaction.  The most common reaction is of the
form:

A-x + B  <=> A + B-x

In other words an exchange of a moiety, group, or electrons among molecules.
As we saw above, most commonly A-x would be ATP and A would be ADP,
and the moiety x is a high energy phosphate group.

We shall see below that this feature has a significant influence on metabolic
dynamics.  Also this feature makes the map a power-law hyper-graph.
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Network elements: nodes and links
Elements Elements are

multifunctionalNodes

Links

Topology

Leads to power law "hyper-graphs"

Linked Nodes

Binary

Pathway

Neighbor

Cluster

B C

X YA

ZV

GRAPH THEORY

Much work will be needed to study the structural features of biochemical
reaction networks.  A few of the issues are illustrated here:

1.  There are elements and links in networks.  In metabolism, these two
correspond to metabolites and the enzymatically catalyzed reactions between
them

2. The topological features will be studied.

3. Each element in a network will have many function and potentially many
types of links

4. In metabolism, there are linked nodes, i.e. one link will tie together more than
two nodes (see previous slide).  This changes the nature of the network
substantially.
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Dynamic Mass Balance: Matrix Form
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THE GENERAL DYNAMIC MASS BALANCE EQUATIONS

This slide shows the details of the general mass balance equations.  The time
derivatives of the metabolite concentrations (X) is the matrix multiplication of
the stoichiometric matrix (S) and the flux vector.

Multiply one row times the vector to see how the summation of fluxes forms the
RHS of the differential equation for that metabolite.
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The stoichiometric matrix as a linear
transformation

Dynamic mass balance: dX
dt

= S•v

View as a mapping operation: v
dX
dt

dX
dtSpaces: v

S

n > m

n-dimensional m-dimensional

S

ANY MATRIX MAPS AN ELEMENT FROM ONE VECTOR SPACE
INTO ANOTHER; THAT IS IT TRANSFORMS ONE VECTOR INTO

ANOTHER

A matrix is a linear transformation;

y = A x,

simply is  x mapped into y by the matrix A.  The stoichiometric matrix maps the
flux vector into the time derivatives. As noted, and as we will discuss in much
more detail later, the flux vector is a function of the metabolite concentrations,
denoted by the vector X in this slide.

The stoichiometric matrix ‘S’ thus takes the flux vector at any instant and
calculates the time derivative of the concentrations; or how the system will
move away from the point that it was located at.  The next slide illustrates this
point.
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The four fundamental subspaces of S

v

vr     Svr = Sv

v      Sv 

vn      Svn = 0
null space

colum
n

 space

lef
t 

null s
pace

ro
w

 
sp

ac
e

vn

vr

Steady State Flux Vectors:
Extreme pathways

Dynamic Flux Vectors Time Derivatives

Dynamic Invariants:
Pools of metabolite concentrations

A SCHEMATIC DEPICTION OF THE ACTION OF A MATRIX AND
THE FOUR SUBSPACES ASSOCIATED WITH IT

Every matrix can be thought of as a mapping operation or a linear
transformation.  It takes a vector in one space and transforms into a vector in
another space.  The four fundamental spaces are the row, column, null, and the
left null space.  These spaces are further described on the next slide.
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The four fundamental subspaces of  S

• The null space S•v=0,
– contains all the steady state solutions to the flux balance

equations

• The  column space of S (range);
– contains the time derivatives resulting from the mapping

• The row space of S;
– contains the dynamic flux vectors on which S operates

• The left null space of S;
– contains all the dynamic invariants of S

THE FOUR SUBSPACES OF THE STIOCIOMETRIC MATRIX

All the four fundamental subspaces of S will be of interest to us.  The first
spaces that we will study are the right and left null space of S, since it contains
all the steady state solutions;

Sv = 0

And the pooled variables

Σi (dXi/dt) = 0
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The Closed “AB” System
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THE SIMPLE ‘AB’ EXAMPLE:

Let’s consider a reversible reaction.  The stoichiometric matrix S is shown and it
is rank deficient.

The addition of the two columns gives zero.  This can be seen by multiplying
the stoichiometric matrix with the column vector (1,1)t. Thus this column vector
spans the null space.  This vector represents the pathway

v1+v2

or the reversible back and forth reaction.

The addition of the rows gives a zero.  This can be seen by multiplying from the
left with the vector (1,1).  Thus (1,1) spans the left null space and represents the
summation of

A+B.

It is obvious in this case that this sum is time invariant.
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The Open “AB” System
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THE OPEN ‘AB’ EXAMPLE

If we now add exchange fluxes the stoichiometric matrix for the closed system
is ‘appended’ with the exchange reactions.  The matrix no longer rank deficient.
Thus the left null space is of zero dimension and there are no conserved
quantities.  The sum of A and B will vary with time depending on the exchange
fluxes.

The null space is now two dimensional.  It is spanned by two pathways. The
same pathway as existed for the closed system, corresponding to the reversible
reaction, is still there.  Later we shall classify this pathway, as Type III.

There is a new pathway vector.  It ties the input and the output via a straight
pass through the system.  Later we shall classify this pathway as Type I.

Any steady state flux distribution in this simple open ‘AB’ system is a linear
combination of these two basis pathways.
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Overlaying Order of Magnitude Kinetics

 “fast” k=100

A B

 “fast” k=100

 “slow” k=1 constant = 1

Rate Equations:
    v1 = 100[A]
    v2 = 100[B]
    b1 = 1  (constant)
    b2 = [B]

Gradient of the flux vector
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INCLUDING CHEMICAL KINETICS

If one wants to simulate the dynamic states of this system, the kinetics of the
reactions need to be known. This means that algebraic expressions for the rate
laws must be provided.  Here we show a simple mass action type representation
of these rate laws assuming that the reaction is first order.

The Jacobian matrix that describes the dynamics is a product of S and the
gradient matrix shown at the bottom of the slide.



110

A and B move to equilibrium
on the “fast” time scale

A+B move as a pool on
the “slow” time scale

Reduced SystemOrder of Magnitude
kinetics results in

metabolite pooling
which leads to a

reduction in the model
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INTRODUCTION TO TIME SCALE SEPARATION

If the reversible reaction is fast compared to the exchange fluxes, there is very
little net exchange with the environment as the reaction equilibrates.  Thus the
system will behave like a closed system on the fast time scale.  Thus a ‘pool’ of
A+B will be formed quickly, and the total inventory in the pool will change
slowly as dictated by the exchange fluxes.  The state of the system is thus
described by only one variable ‘A+B’.

This pool formation procedure will be a key element in the massive model
reduction challenge that faces us.
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Geometric Representation in the Null Space

The steady state solution can be decomposed into weightings on the extreme pathways.

For the sample system above, the steady state solution is:

v1=101; v2=100; b1=1; b2=1

This can be broken down into weightings on the pathways:

1p1 + 100p2

v1

p2 = v1+ v2

v2

p1 = v1 + b1 + b2

Steady State Solution: 1p1 + 100 p2

The fast kinetics of v1 and v2

“push” the steady state
solution to the p2 edge of the
cone/plane.

b1/2

INSIGHTS FROM GEOMETRY

The null space is a cone, as we shall see in much more detail later, and the two
pathways are the edges of this cone.  If the kinetic parameters are well separated
as indicated the steady state flux distribution is

vss = p1 + 100 p2

This solution lies ‘close to the edge’ of the solution space.  We shall see this
feature emerge as a principle later on
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The “ABC” System
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A SLIGHTLY MORE COMPEX EXAMPLE

The next two slides have a slight variation on the previous example.  Now we
are examining a 3 component system but the analysis is the same. A and B
equilibrate on the fast time scale forming a pool (A+B).  On the slower time
scale the the pool (A+B) is filled via the input reaction and drained via the
conversion to C.
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•A and B move to equilibrium on
  the “fast” time scale
•C essentially does not change

•A + B moves as a pool to reach
equilibration with C

Reduced System
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These graphs show the pooling effect over the 2 times scales.  On the fast time
scale it is evident that A and B are equilibrating while C is unchanging (the
concentration does not change under the fast “window of observation”).  On the
slower time scale, you can see that A and B move as a pool to equilibrate with
C.

The reduced network that is a result of the pooling is diagramed at the bottom of
the slide.
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The Michaelis-Menten Reaction Mechanism
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THE MICHAELIS-MENTEN REACTION MECHANISM

The classical MM mechanism can be studied along the lines introduced.  For the
closed system there is one pathway and two conserved moieties: the total
enzyme and the total substrate species.  The latter disappears as we open the
system on the next slide.

A detailed kinetic analysis of the irreversible MM mechanism is found in:

B. O. Palsson (1987), "On  the  Dynamics of the Irreversible Michaelis-Menten
Reaction Mechanism'', Chem. Eng. Sci., 42, 447-458.
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Stoichiometric Matrix
• Can now be derived from annotated genomes given

knowledge of enzyme stoichiometries
• A mathematically compact description of metabolic

maps
• Has characteristic connectivity and graph properties
• Its size for simple prokaryotic cells is (300-450) X (500-

750)
• The stoichiometric matrix is ‘sparse’, i.e. few non-zero

elements
• It has well defined associated fundamental sub-spaces
• These subspaces are keys to understanding pool and

pathway formation, and thus model reduction and
conceptual simplification

SUMMARY OF POINTS MADE ABOUT THE STOICHIOMETRIC
MATRIX

This list is a summary of the points made about the matrix.  Next we shall look
into linear algebra and examine the matrix properties of S.
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