A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology.

TitleA multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology.
Publication TypeJournal Article
Year of Publication2011
AuthorsBordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BO, Famili I
JournalBMC Syst Biol
Volume5
Pagination180
PubMed Date2011-11-2
ISSN1752-0509
KeywordsAdipocytes, Alanine, Computer Simulation, Diabetes Mellitus, Genome, Human, Hepatocytes, Humans, Metabolic Networks and Pathways, Metabolomics, Models, Biological, Muscle Cells, Obesity, Systems Biology
Abstract

BACKGROUND: Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no integrated analysis between human tissues has been done. RESULTS: To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology with systemic properties. High-throughput data was integrated with the network to determine differential metabolic activity between obese and type II obese gastric bypass patients in a whole-body context. CONCLUSION: The multi-tissue type modeling approach presented provides a platform to study integrated metabolic states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study their interdependencies.

Alternate JournalBMC Syst Biol
PubMed ID22041191

Location

Location

417 Powell-Focht Bioengineering Hall

9500 Gilman Drive La Jolla, CA 92093-0412

Contact Us

Contact Us

In Silico Lab:  858-822-1144

Wet Lab:  858-246-1625

FAX:   858-822-3120

Website Concerns: sbrgit@ucsd.edu

User Login