Network-level allosteric effects are elucidated by detailing how ligand-binding events modulate utilization of catalytic potentials.

TitleNetwork-level allosteric effects are elucidated by detailing how ligand-binding events modulate utilization of catalytic potentials.
Publication TypeJournal Article
Year of Publication2018
AuthorsYurkovich JT, Alcantar MA, Haiman ZB, Palsson BO
JournalPLoS Comput Biol
Volume14
Issue8
Paginatione1006356
PubMed Date08/2018
ISSN1553-7358
Abstract

Allosteric regulation has traditionally been described by mathematically-complex allosteric rate laws in the form of ratios of polynomials derived from the application of simplifying kinetic assumptions. Alternatively, an approach that explicitly describes all known ligand-binding events requires no simplifying assumptions while allowing for the computation of enzymatic states. Here, we employ such a modeling approach to examine the "catalytic potential" of an enzyme-an enzyme's capacity to catalyze a biochemical reaction. The catalytic potential is the fundamental result of multiple ligand-binding events that represents a "tug of war" among the various regulators and substrates within the network. This formalism allows for the assessment of interacting allosteric enzymes and development of a network-level understanding of regulation. We first define the catalytic potential and use it to characterize the response of three key kinases (hexokinase, phosphofructokinase, and pyruvate kinase) in human red blood cell glycolysis to perturbations in ATP utilization. Next, we examine the sensitivity of the catalytic potential by using existing personalized models, finding that the catalytic potential allows for the identification of subtle but important differences in how individuals respond to such perturbations. Finally, we explore how the catalytic potential can help to elucidate how enzymes work in tandem to maintain a homeostatic state. Taken together, this work provides an interpretation and visualization of the dynamic interactions and network-level effects of interacting allosteric enzymes.

Alternate JournalPLoS Comput. Biol.
PubMed ID30086174
Cover Image: 

Location

Location

417 Powell-Focht Bioengineering Hall

9500 Gilman Drive La Jolla, CA 92093-0412

Contact Us

Contact Us

In Silico Lab:  858-822-1144

Wet Lab:  858-246-1625

FAX:   858-822-3120

Website Concerns: sbrgit@ucsd.edu

 

Visit the Official SBRG YouTube Channel

User Login