Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP

TitleSystems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP
Publication TypeJournal Article
Year of Publication2016
AuthorsKim D, Seo SWoo, Nam H, Guzman GI, Gao Y, Palsson BO
JournalbioRxiv
PubMed Date10/2016
Abstract

Two major transcriptional regulators of carbon metabolism in bacteria are Cra and CRP. CRP is considered to be the main mediator of catabolite repression. Unlike for CRP, available in vivo DNA binding information of Cra is scarce. Here we generate and integrate ChIP-exo and RNA-seq data to identify 39 binding sites for Cra and 97 regulon genes that are regulated by Cra in Escherichia coli. An integrated metabolic-regulatory network was formed by including experimentally-derived regulatory information and a genome-scale metabolic network reconstruction. Applying analysis methods of systems biology to this integrated network showed that Cra enables the optimal bacterial growth on poor carbon sources by redirecting and repressing the glycolysis flux, by activating the glyoxylate shunt pathway, and by activating the respiratory pathway. In these regulatory mechanisms, the overriding regulatory activity of Cra over CRP is fundamental. Thus, elucidation of interacting transcriptional regulation of core carbon metabolism in bacteria by two key transcription factors was possible by combining genome-wide experimental measurement and simulation with a genome-scale metabolic model.

URLhttps://doi.org/10.1101/080929
Cover Image: 

Location

Location

417 Powell-Focht Bioengineering Hall

9500 Gilman Drive La Jolla, CA 92093-0412

Contact Us

Contact Us

In Silico Lab:  858-822-1144

Wet Lab:  858-246-1625

FAX:   858-822-3120

Website Concerns: sbrgit@ucsd.edu

User Login