TFpredict and SABINE: sequence-based prediction of structural and functional characteristics of transcription factors.

TitleTFpredict and SABINE: sequence-based prediction of structural and functional characteristics of transcription factors.
Publication TypeJournal Article
Year of Publication2013
AuthorsEichner J, Topf F, Dräger A, Wrzodek C, Wanke D, Zell A
JournalPLoS One
Volume8
Issue12
Paginatione82238
PubMed Date12/2013
ISSN1932-6203
KeywordsAlgorithms, Amino Acid Sequence, Computational Biology, Nucleotide Motifs, Protein Structure, Tertiary, Software, Transcription Factors
Abstract

One of the key mechanisms of transcriptional control are the specific connections between transcription factors (TF) and cis-regulatory elements in gene promoters. The elucidation of these specific protein-DNA interactions is crucial to gain insights into the complex regulatory mechanisms and networks underlying the adaptation of organisms to dynamically changing environmental conditions. As experimental techniques for determining TF binding sites are expensive and mostly performed for selected TFs only, accurate computational approaches are needed to analyze transcriptional regulation in eukaryotes on a genome-wide level. We implemented a four-step classification workflow which for a given protein sequence (1) discriminates TFs from other proteins, (2) determines the structural superclass of TFs, (3) identifies the DNA-binding domains of TFs and (4) predicts their cis-acting DNA motif. While existing tools were extended and adapted for performing the latter two prediction steps, the first two steps are based on a novel numeric sequence representation which allows for combining existing knowledge from a BLAST scan with robust machine learning-based classification. By evaluation on a set of experimentally confirmed TFs and non-TFs, we demonstrate that our new protein sequence representation facilitates more reliable identification and structural classification of TFs than previously proposed sequence-derived features. The algorithms underlying our proposed methodology are implemented in the two complementary tools TFpredict and SABINE. The online and stand-alone versions of TFpredict and SABINE are freely available to academics at http://www.cogsys.cs.uni-tuebingen.de/software/TFpredict/ and http://www.cogsys.cs.uni-tuebingen.de/software/SABINE/.

Alternate JournalPLoS ONE
PubMed ID24349230
PubMed Central IDPMC3861411
Cover Image: 

Location

Location

417 Powell-Focht Bioengineering Hall

9500 Gilman Drive La Jolla, CA 92093-0412

Contact Us

Contact Us

In Silico Lab:  858-822-1144

Wet Lab:  858-246-1625

FAX:   858-822-3120

Website Concerns: sbrgit@ucsd.edu

User Login