[ Author(Asc)] Title Year
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R, Mittag F, Schubert M, Glont M, Golebiewski M et al..  2013.  Path2Models: large-scale generation of computational models from biochemical pathway maps.. BMC Syst Biol. 7:116.
Büchel F, Saliger S, Dräger A, Hoffmann S, Wrzodek C, Zell A, Kahle PJ.  2013.  Parkinson's disease: dopaminergic nerve cell model is consistent with experimental finding of increased extracellular transport of α-synuclein.. BMC Neurosci. 14:136.
Brunk E, George KW, Alonso-Gutierrez J, Thompson M, Baidoo E, Wang G, Petzold CJ, McCloskey D, Monk J, Yang L et al..  2016.  Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow.. Cell Syst.
Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Dräger A, Mih N, Gatto F, Nilsson A, Gonzalez GAndres Pre, Aurich MKathrin et al..  2018.  Recon3D enables a three-dimensional view of gene variation in human metabolism.. Nat Biotechnol.
Brunk E, Mih N, Monk J, Zhang Z, O'Brien EJ, Bliven SE, Chen K, Chang RL, Bourne PE, Palsson BO.  2016.  Systems biology of the structural proteome.. BMC Syst Biol. 10(1):26.
Broddrick JT, Rubin BE, Welkie DG, Du N, Mih N, Diamond S, Lee JJ, Golden SS, Palsson BO.  2016.  Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis.. Proc Natl Acad Sci U S A. 113(51):E8344-E8353.
Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V, Palsson BØ.  2016.  Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity.. Proc Natl Acad Sci U S A.
Bordbar A, Monk JM, King ZA, Palsson BO.  2014.  Constraint-based models predict metabolic and associated cellular functions.. Nat Rev Genet. 15(2):107-20.
Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson OE, Palsson BO.  2017.  Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics.. Sci Rep. 7:46249.
Bordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BO, Famili I.  2011.  A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology.. BMC Syst Biol. 5:180.
Bordbar A, Johansson PI, Paglia G, Harrison SJ, Wichuk K, Magnúsdóttir M, Valgeirsdottir S, Gybel-Brask M, Ostrowski SR, Palsson S et al..  2016.  Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes.. Transfusion.
Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N.  2010.  Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions.. Molecular systems biology. 6:422.
Bordbar A, Nagarajan H, Lewis NE, Latif H, Ebrahim A, Federowicz S, Schellenberger J, Palsson BO.  2014.  Minimal metabolic pathway structure is consistent with associated biomolecular interactions.. Mol Syst Biol. 10(7):737.
Bordbar A, Palsson BO.  2012.  Using the reconstructed genome-scale human metabolic network to study physiology and pathology.. J Intern Med. 271(2):131-41.
Bordbar A, Mo ML, Nakayasu ES, Schrimpe-Rutledge AC, Kim Y-M, Metz TO, Jones MB, Frank BC, Smith RD, Peterson SN et al..  2012.  Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation.. Mol Syst Biol. 8:558.
Bordbar A, Jamshidi N, Palsson BO.  2011.  iAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states.. BMC Syst Biol. 5:110.
Bordbar A., McCloskey D., Zielinski D.C., Sonnenschein N., Jamshidi N., Palsson B.O..  2015.  Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics. Cell Systems. 1:283-292.
Bell SL, Palsson BØ.  2005.  Expa: a program for calculating extreme pathways in biochemical reaction networks.. Bioinformatics (Oxford, England). 21(8):1739-40.
Becker SA, Palsson BØ.  2005.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation.. BMC microbiology. 5:8.
Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ.  2007.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox.. Nature protocols. 2(3):727-38.
Becker SA, Price ND, Palsson BØ.  2006.  Metabolite coupling in genome-scale metabolic networks.. BMC bioinformatics. 7:111.
Becker SA, Palsson BØ.  2008.  Three factors underlying incorrect in silico predictions of essential metabolic genes.. BMC systems biology. 2:14.
Becker SA, Palsson BØ.  2008.  Context-specific metabolic networks are consistent with experiments.. PLoS computational biology. 4(5):e1000082.
Baycin-Hizal D, Tabb DL, Chaerkady R, Chen L, Lewis NE, Nagarajan H, Sarkaria V, Kumar A, Wolozny D, Colao J et al..  2012.  Proteomic analysis of Chinese hamster ovary cells.. J Proteome Res. 11(11):5265-76.
Barrett CL, Palsson BØ.  2006.  Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.. PLoS computational biology. 2(5):e52.
Barrett CL, Kim T Y, Kim H U, Palsson BØ, Lee S Y.  2006.  Systems biology as a foundation for genome-scale synthetic biology.. Current opinion in biotechnology. 17(5):488-92.
Barrett CL, Herring CD, Reed JL, Palsson BØ.  2005.  The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states.. Proceedings of the National Academy of Sciences of the United States of America. 102(52):19103-8.
Barrett CL, Herrgard MJ, Palsson BØ.  2009.  Decomposing complex reaction networks using random sampling, principal component analysis and basis rotation.. BMC systems biology. 3:30.
Barrett CL, Price ND, Palsson BØ.  2006.  Network-level analysis of metabolic regulation in the human red blood cell using random sampling and singular value decomposition.. BMC bioinformatics. 7:132.
Barrett CL, Cho B-K, Palsson BO.  2011.  Sensitive and accurate identification of protein-DNA binding events in ChIP-chip assays using higher order derivative analysis.. Nucleic Acids Res. 39(5):1656-65.



417 Powell-Focht Bioengineering Hall

9500 Gilman Drive La Jolla, CA 92093-0412

Contact Us

Contact Us

In Silico Lab:  858-822-1144

Wet Lab:  858-246-1625

FAX:   858-822-3120

Website Concerns:


Visit the Official SBRG YouTube Channel

User Login